Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Biomedical Engineering ; (6): 157-162, 2011.
Article in Chinese | WPRIM | ID: wpr-306601

ABSTRACT

This study was aimed to compare the differences of adhesion properties of endothelial cells (EC) from arteries (AEC), veins (VEC) and capillaries (MVEC) under shear stress condition, and to explore whether they can get the same adhesive ability as graft in similar shear stress conditions. With mended parallel plate flow apparatus and peristalsis pump providing fluid shear stress used, endothelial culture models were established in vitro with the same environmental factors as steady culture. To compare the adhesion among three kinds of endothelial cells under dynamic condition and static condition, the dynamic change of cytoskeletal actin filaments and the effects of different adhesive proteins coated on the adhesion of EC to the glass were studied. The cultured endothelial cells under flow conditions were extended and arranged along the direction of flow. The adhesive ability from high to low under static condition were AEC, MVEC and VEC (VEC compared with AEC or MVEC, P < 0.05), sequentially. The adhesion of endothelial cells from variety sources under dynamic culture condition was significantly increased than that of the static groups. The ratio of cell retention was not significantly different between AEC and MVEC. But VEC was significantly different (P < 0.05) compared with AEC or MVEC. The actin filaments (F-actin) were bundled together and arranged along the direction of flow after fluid culture. Dense peripheral band (DPB) gradually disappeared and distinct stress fibers were formed, which even interconnected to form a whole in the MVEC. The adhesion of AEC, VEC and MVEC under shear stress conditions are more significantly increased than those under the static culture conditions, and the MVEC can achieve the same adhesion as AEC.


Subject(s)
Humans , Arteries , Cell Biology , Capillaries , Cell Biology , Cell Adhesion , Cell Culture Techniques , Methods , Cells, Cultured , Cytoskeleton , Physiology , Endothelial Cells , Cell Biology , Physiology , Shear Strength , Stress, Mechanical , Veins , Cell Biology
2.
Journal of Biomedical Engineering ; (6): 506-512, 2011.
Article in Chinese | WPRIM | ID: wpr-306528

ABSTRACT

Our previous studies on the function of the osteoblasts (OBs) have shown that worn titanium particles decrease osteoblast function and promot secretion of bone resorption cytokines of OBs surrounding the synovium-like interface membrane of loosening implants. The current study was aimed to test the hypothesis that osteoclasts (OCs) bone absorption function is induced by conditioned media (CM) prepared from OBs loaded in the presence or absence of titanium particles (with three mean diameters 6.9 microm, 2.7 microm, and 0.9 microm, respectively). The effects of CM on OCs function were examined using a combination of the morphological characteristics tests, i.e., TRAP dyeing, scanning electron microscopy, F-actin immunofluorescence protocol for confocal microscopy, bone resorption lacunae assay, osteoclastic calcium tracking, with biochemical evaluation, i.e., C-terminal cross-linked telopeptides of type I collagen evaluated with ABC-ELISA method. The results showed that CM from 0.9 microm titanium particles could induce osteoclastic differentiation and formation, could partially influence the survival of the OCs; while CM of 2.7 microm and 6.9 microm titanium particles, especially the latter, could obviously augmented osteoclastic activity, survival, or differentiation. The stimulation of osteoclast function may be due to a parallel increase in the intracellular free calcium concentration. The present study provides strong support for the hypothesis that osteoclastic activity, survival, or differentiation are very important in the development of aseptic loosening. The development of therapeutic interventions to reduce osteoclastic function and optimization of biomaterials may be useful approaches for improving the performance of orthopaedic implants.


Subject(s)
Animals , Rabbits , Bone Resorption , Cells, Cultured , Osteoblasts , Cell Biology , Physiology , Osteoclasts , Cell Biology , Physiology , Particle Size , Prosthesis Failure , Titanium , Pharmacology
3.
Journal of Biomedical Engineering ; (6): 795-800, 2010.
Article in Chinese | WPRIM | ID: wpr-230782

ABSTRACT

Lining the inner surface of the walls of blood vessels, Endothelial cells (ECs) go beyond providing selective membrane to maintain the natural structure and function of vessels; they also synthesize varieties of vasoactive proteins to modify the pressure shift in the local flow field and hence they adapt the physiological activities of vessels. In this experiment, ELISA and RT-PCR technologies were adopted. We set up five different pressure loaded ECs groups,one non-activated cultured ECs group and one single shear stress loaded ECs group. Such a design was intended to demonstrate the effects of pressure shift on the expression of vasoactive protein synthesized by ECs [Endothelin-1(ET-1), endothelial Nitric Oxide Synthase (eNOS), Cyclooxygenase-2(COX-2) and Vascular Endothelial Growth Factor(VEGF)]. Our aim was to elucidate the mechanism of the pressure shift mediated dysfunction in ECs and the related dose-effect relationship. Based on these data, we suggest that ECs could modify the expression of vasoactive protein for adapting to the pressure shift in the local flow field; while in the process of--40 cmH2O induced ECs' dysfunction, the vasoactive proteins eNOS, COX-2 and VEGF play an important role in protecting ECs.


Subject(s)
Humans , Cells, Cultured , Cyclooxygenase 2 , Genetics , Metabolism , Endothelial Cells , Metabolism , Physiology , Endothelin-1 , Genetics , Metabolism , Nitric Oxide Synthase Type III , Genetics , Metabolism , Pressure , RNA, Messenger , Genetics , Metabolism , Vascular Endothelial Growth Factor A , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL